NYT Pips Hint, Answer & Solution for February 8, 2026

Feb 8, 2026

🚨 SPOILER WARNING

This page contains the final **answer** and the complete **solution** to today's NYT Pips puzzle. If you haven't attempted the puzzle yet and want to try solving it yourself first, now's your chance!

Click here to play today's official NYT Pips game first.

Want hints instead? Scroll down for progressive clues that won't spoil the fun.

🎲 Today's Puzzle Overview

Sunday, February 8, 2026 brings a smooth but surprisingly tactical NYT Pips lineup—perfect for solvers who enjoy trading quick Pips hints and watching small constraints snowball into full-board clarity.

Edited by Ian Livengood, today’s set leans heavily into Equal regions, which makes this an ideal “pips hint today” kind of grid: once you spot one forced number, the rest of the domino placements start collapsing into place naturally.

The easy puzzle (ID 596) by Ian Livengood is all about controlling repeated values and using the >4 and <2 gates to lock down which halves are even possible.

It’s a fast warm-up, but still satisfying if you like clean eliminations.

The medium puzzle (ID 621), also by Ian Livengood, takes the Equal-region theme further with multiple locked clusters, two sum-0 regions, and a late-game >8 requirement that forces smarter tracking.

Great puzzle for practicing disciplined scanning.

The hard puzzle (ID 647) by Rodolfo Kurchan turns the day into a real logic grind: massive sum targets like 22 and 18, multiple Empty cells, several Equal blocks, and pressure points like >2 that punish sloppy assumptions.

This is where one correct domino can unlock an entire chain reaction.

If you’re searching for NYT Pips hints, a full solution walkthrough, or a clean step-by-step Pips guide for February 8, 2026, this Sunday set is packed with strong “aha” moments and great community discussion potential.

Written by Nikki

Puzzle Analyst – Sophia

💡 Progressive Hints

Try these hints one at a time. Each hint becomes more specific to help you solve it yourself!

💡 Hint #1 - Nice and easy
Just do it
💡 Hint #1 - Identify the Forced Equal Value
Start by scanning the domino list for rare numbers tied to an Equal region. Since multiple 4-heavy dominoes exist and the Light Blue Equal region can only be satisfied consistently by 4s, lock that value early to prevent wasted branching.
💡 Hint #2 - Chain Multiple Equals Through Limited Digits
Use the Yellow 0 region as a trigger: only two dominoes contain 0, so once a 0 placement is fixed, the surrounding Equal regions collapse quickly. From there, assign Red Equal as 2 and Purple Equal as 3 by matching the remaining domino halves that can repeatedly supply those values.
💡 Hint #3 - Finish Remaining Equals Using Leftover Inventory
After the major Equal regions are resolved, check what numbers are still available. With only (6-4, 6-2, 1-1, 1-0) left, the only clean repeated value for Blue Equal is 1, which instantly forces the 1-1 placement and pairs naturally with Green 0 using 1-0.
💡 Hint #4 - Solve Inequalities by Testing the Only Valid High Pair
When Red must be >8, there are very few combinations that work with the remaining dominoes. Since 6 is the only high pip available, Red must receive a 6 paired with either 4 or another 6. That forces the 6-4 placement, leaving the 2 to safely satisfy Purple <3.
💡 Hint #1 - Domino Inventory Check
Start by counting extreme values. The Light Blue 1 region forces four 0s, so track every 0-pip half immediately. At the same time, note there are only six 6-pip halves total—once Red 11 and Red 18 consume four of them, the remaining two must belong to the Purple 22 total.
💡 Hint #2 - Lock the 22-Sum Core
Use the Purple 22 requirement to force a specific composition. Since 22 must be built from 5+5+6+6 and there is no 6-5 domino available, the only clean way to feed a 6 into the region while dumping a 0 elsewhere is placing 0-6, then immediately confirm 5-5 as the second anchor.
💡 Hint #3 - Force the 18 Total with Pure Sixes
Treat Red 18 like a fixed equation: it can only be 6+6+6. Once you confirm one 6 is already reserved elsewhere, the only safe placement that preserves the remaining 6 supply is dropping the 6-6 directly into Red 18.
💡 Hint #4 - Equal Region Value Trap
Solve the Equal regions by elimination, not guessing. With only two doubles left (4-4 and 0-0), the Blue Equal region cannot be 0 because the 0s are already needed for Light Blue 1. That forces Blue Equal to be 4, which then narrows Purple Equal to 5 using remaining 4-pip availability.
💡 Hint #5 - Resolve the 11 Total and Chain Into Equals
Red 11 has only one realistic split: 5+6. Once that is fixed, Green Equal becomes locked at 2, and the leftover 4 from the placed 6-4 naturally satisfies Yellow >2. This is a key moment where one placement confirms three regions at once.
💡 Hint #6 - Use Equal to Feed the 18 Region
When Yellow Equal must be 3, it automatically identifies the only usable domino half that can supply both a 3 and a 6 nearby. Place 6-3 so the 6 strengthens Red 18 while the 3 satisfies Yellow Equal, then use 3-1 to clean up the remaining adjacency.
💡 Hint #7 - Finish the 22 Total by Remaining Six Management
Once only one 6 remains unassigned, it must go into Purple 22 to complete the 5+5+6+6 structure. That makes 6-2 the forced placement, and the leftover Purple Equal slot can only accept the remaining 5 via 5-0.
💡 Hint #8 - Complete the 1-Sum Region with Zero Packing
Light Blue 1 is a classic cleanup region: it must equal 0+0+0+0+1. After earlier placements already provide the required 0 and 1, the final step is simply packing the remaining 0-0 and 0-1 dominoes to satisfy the last open cells without breaking totals.

🎨 Pips Solver

Feb 8, 2026

Click a domino to place it on the board. You can also click the board, and the correct domino will appear.

Final Answer & Complete Solution For Hard Level

The key to solving today's hard puzzle was identifying the placement for the critical dominoes highlighted in the starting grid. Once those were in place, the rest of the puzzle could be solved logically. See the final grid below to compare your solution.

Starting Position & Key First Steps

Pips hint for February 8, 2026 – hard level puzzle grid with critical first placements and strategy

This image shows the initial puzzle grid for the hard level, with a few critical first placements highlighted.

Final Answer: The Solved Grid for Hard Mode

NYT Pips February 8, 2026 hard puzzle full solution grid showing final answer with hints

Compare this final grid with your own solution to see the correct placement of all dominoes.

🔧 Step-by-Step Answer Walkthrough For Easy Level

1
Step 1
Dominoes Include: [5-2], [4-4], [4-1], [3-0], [2-2], [0-0].
2
Step 2: Green 3 + Purple Equal --(Arrows ①②)
Confirmed by neighboring region and step 1 and relative position. The domino halves in Purple Equal region must be 0. The answer is 3-0, placed horizontally; 0-0, placed vertically.
3
Step 3: Red >4 + Light Blue Equal --(Arrows ③④)
Confirmed by neighboring region and remaining dominoes (5-2, 4-4, 4-1, 2-2). The domino halves in Light Blue Equal region must be 2. The answer is 5-2 (5 into Red >4 region), placed horizontally; 2-2, placed horizontally.
4
Step 4: Yellow <2 + Blue Equal --(Arrows ⑤⑥)
Confirmed by neighboring region and remaining dominoes (4-4, 4-1). The domino halves in Blue Equal must be 4. The answer is 1-4 (1 into Yellow <2 region), placed vertically; 4-4, placed horizontally.

🔧 Step-by-Step Answer Walkthrough For Medium Level

1
Step 1
Dominoes Include: [6-4], [6-2], [4-4], [4-2], [4-0], [3-3], [3-2], [1-1], [1-0]. The domino halves in Light Blue Equal must be 4.
2
Step 2: Yellow 0 + Light Blue Equal + Red Equal + Purple Equal --(Arrows ①②③④⑤)
Confirmed by neighboring region and step 1 and relative position. Only 2 dominoes with 0 pips (4-0, 1-0). The domino halves in Light Blue Equal region must be 4. The domino halves in Red Equal must be 2. The domino halves in Purple Equal must be 3. The answer is 0-4, placed vertically; 4-4, placed horizontally; 4-2, placed horizontally; 2-3, placed horizontally; 3-3, placed vertically.
3
Step 3: Blue Equal + Green 0 --(Arrows ⑥⑦)
Confirmed by neighboring region and remaining dominoes (6-4, 6-2, 1-1, 1-0). The domino halves in Blue Equal region must be 1. The answer is 1-1, placed vertically; 1-0, placed horizontally.
4
Step 4: Purple <3 + Red >8 --(Arrows ⑧⑨)
Confirmed by neighboring region and remaining dominoes (6-4, 6-2). The domino halves in Red >8 region must be 6+4 or 6+6. e.g: The answer is 2-6 (2 into Purple <3 region), placed horizontally; 6-4 (6 into Red >8 region, 4 up into blank), placed vertically.

🔧 Step-by-Step Answer Walkthrough For Hard Level

1
Step 1
Dominoes Include: [6-6], [6-4], [6-3], [6-2], [6-0], [5-5], [5-4], [5-3], [5-2], [5-0], [4-4], [3-1], [2-1], [1-0], [0-0]. The domino halves in Light Blue 1 region must be 0+0+0+0+1, only 5 domino halves that contain 0 pips (need four for Light Blue 1 region). Only 6 domino halves that contain 6 pips, need one for Red 11 region, need three for Red 18 region, the last two for Purple 22 region.
2
Step 2: Purple 22 --(Arrows ①②)
Confirmed by neighboring region and step 1 and relative position. The domino halves in Purple 22 region must be 5+5+6+6 (one 6s come form step 7). No domino with the number 6-5. The answer is 0-6 (0 into Light Blue 1 region), placed vertically; 5-5, placed horizontally.
3
Step 3: Red 18 --(Arrows ③)
Confirmed by neighboring region and relative position and remaining dominoes. The domino halves in Red 18 region must be 6+6+6 (one 6s come from step 6). The answer is 6-6, placed horizontally.
4
Step 4: Blue Equal + Purple Equal + Green >2 --(Arrows ④⑤⑥)
Confirmed by neighboring region and relative position and step 1 and remaining dominoes. Need one domino with the same number placed in Blue Equal region, only 2 dominoes left that with the same number (4-4, 0-0). Therefore, the domino halves in Blue Equal region must be 4. The domino halves left that contain 4 pips (6-4, 5-4, 4-4), so the domino halve in Purple Equal region must be 5 (one 5s come from step 7). The answer is 4-4, placed vertically; 4-5, placed horizontally; 3-5 (3 into Green >2 region), placed horizontally.
5
Step 5: Red 11 + Green Equal + Yellow >2 --(Arrows ⑦⑧⑨)
Confirmed by all left regions and remaining dominoes (6-4, 6-3, 6-2, 5-2, 5-0, 3-1, 2-1, 1-0, 0-0). The domino halves in Red 11 region must be 5+6. The domino halves in Green Equ,al region must be 2. The answer is 5-2, placed vertically; 6-4 (4 into Yellow >2 region), placed horizontally; 2-1 (1 into Light Blue 1 region), placed horizontally.
6
Step 6: Red 18 + Yellow Equal --(Arrows ⑩⑪)
Confirmed by neighboring region and remaining dominoes (6-3, 6-2, 5-0, 3-1, 1-0, 0-0). The domino halves in Yellow Equal region must be 3. The answer is 6-3 (6 into Red 18 region), placed vertically; 3-1 (1 left into blank), placed horizontally.
7
Step 7: Purple 22 + Purple Equal --(Arrows ⑫⑬)
Confirmed by neighboring region and remaining dominoes (6-2, 5-0, 1-0, 0-0). The answer is 6-2 (6 into Purple 22 region, 2 right into blank), placed horizontally; 5-0 (5 into Purple Equal region, 0 down into blank), placed vertically.
8
Step 8: Light Blue 1 --(Arrows ⑭⑮)
Confirmed by neighboring region and remaining dominoes (1-0, 0-0). The domino halves in this region must be 0+0+0+0+1 (one 0s already come from Arrows ①, 1s alread come from Arrows ⑨). The answer is 0-0, placed vertically; 0-1 (1 right into blank), placed vertically.

🎥 NYT Pips Solution & Hints for February 8, 2026 (Sunday) — Easy 596, Medium 621, Hard 647 Walkthrough

This walkthrough covers all three puzzles with clear placements and reasoning.

💡 Pro Tips for Similar Puzzles

Start with Constraints
Always begin with the most constrained regions - sum regions with small numbers or tight spaces.
Use Equal Regions
Use "equal" regions as anchors - they eliminate many possibilities quickly.
Work Systematically
Let the rules guide your placement rather than guessing randomly.
Double-Check
Verify each region's rules are satisfied before moving to the next.

🎓 Keep Learning & Improve